Cell

The smallest living units of the body

• Cell (plasma) membrane = The outer "skin" of the cell

 $\sqrt{\text{Composed of phospholipids and some cholesterol}}$

- $\sqrt{\text{Receptors and membrane transport proteins are found in the membrane}}$
- Cytoplasm = The fluid that fills the cell

 \sqrt{Mostly} water with dissolved ions and molecules

 $\sqrt{\text{Organelles}}$ (tiny functional structures that keep the cell alive) float in the cytoplasm

• Nucleus = The location of the DNA (the cell's genetic material)

 $\sqrt{}$ The nucleus is enclosed in its own a membrane

 $\sqrt{\text{Chromosomes}}$ = Long pieces of DNA in the nucleus Figs 3.3, 3.4, and 3.13

Cells

Metabolism

The sum of all chemical reactions occurring inside an organism

- All metabolic reactions are performed by enzymes
- Catabolic reactions = Metabolic reactions in which larger molecules are broken down into smaller molecules.
- Anabolic reactions = Metabolic reactions in which smaller molecules are joined to form larger molecules.
- ATP supplies the energy for metabolism

Figs 1.6 and 24.2

Cells

Cellular aerobic respiration

A process by which cells obtain energy (to recharge their ATP) by using oxygen to break down glucose

- Cells import O₂ and glucose from the blood
- \bullet The glucose is broken down into carbon dioxide and water using the O_2

$$C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$$
 (+energy)
(glucose)

• Recharges 32 ATP per glucose molecule

 \sqrt{F} ats and amino acids can also be broken down for energy

 \bullet CO₂ and other cellular wastes are exported from the cell into the blood

Figs 24.2 and 24.3

Cells

Cellular anaerobic respiration

A process by which certain cells can obtain energy (to recharge their ATP) by breaking down glucose **without using oxygen**

• Each glucose is broken down into two molecules of lactic acid

$$\begin{array}{ccc} C_6 H_{12} O_6 & \twoheadrightarrow & 2 C_3 H_6 O_3 & (+energy) \\ (glucose) & (lactic acid) \end{array}$$

• Recharges only 2 ATP per glucose molecule

 $\sqrt{\text{Much less energy efficient that aerobic respiration}}$ Figs 24.2 and 24.3